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Abstract. The finite-temperature excitations of a large Toda lattice in the semiclassical 
regime are analysed using the Bethe ansatz, and a physical interpretation is presented, 
showing clearly that the lattice phonon excitation corresponds to the Bethe ansatz hole, 
even in the classical limit at finite temperature. Our method gives a simple derivation of 
the formulae for excitation energies and momenta, which were first written down by 
Gruner-Bauer and Mertens from a consistency argument, and it suggests why solitons do 
not apparently contribute to the Toda lattice free energy. 

1. Introduction 

Recently, a number of authors [ 1-51 have examined the problem of finding dispersion 
curves for excitations in the Toda lattice at finite temperatures. This is an interesting 
problem because the Toda lattice [ 6 ]  is fully integrable, having both phonon- and 
soliton-type excitations, and thus is a soluble, reasonably physical [ 71, anharmonic 
one-dimensional system. Similar work has already been done for excitations in the 
sine-Gordon system where, for example, the temperature dependence of the soliton 
mass [8] is fairly well understood. The Toda lattice, however, is rather different from 
the sine-Gordon system in that the soliton is non-topological and there is no mass gap. 

The analyses in the literature [l-51 of excitation spectra and thermodynamics for 
the large quantum Toda lattice are all based on the Bethe ansatz equations. In fact, 
despite the full integrability of the system, these equations are not precisely correct 
for the finite (periodic) lattice [9], but we have found they do become exact in the 
limit of a large lattice, so in this paper we always assume we are looking at a large 
system. (Actually, the Bethe ansatz analysis misses a fixed fraction of the states of the 
system [ 9 ] ,  but this does not affect our arguments or conclusions here.) 

The Bethe ansatz analysis of finite-temperature excitation energies is based on the 
work of Lieb and Liniger [ 101 and Yang and Yang [ 111 on the non-relativistic Bose 
gas with delta function interaction between particles. For the Bose gas, the interaction 
gives rise to a wavefunction of a quasifermionic nature in that it is defined in terms 
of a set of momentum-like variables { k i }  which must all be distinct and, for the 
eigenstates in a system with periodic boundary conditions, each ki has an associated 
integer quantum number I , ,  corresponding to the total phase winding (kinetic plus 
phase shift) on moving that particle around the system. The ground state is thus a 
filled ‘Fermi sea’ from - k ,  to k F ,  corresponding to the lowest possible set of these 
quantum numbers {Ii} f 0, * l ,  *2, . . . , and at zero temperature the excitations are 

0305-4470/89/153095 + 07$02.50 @ 1989 IOP Publishing Ltd 3095 



3096 M Fowler and Nai-Chang Yu 

holes in this sea and particles above it. The dispersion curves differ from the free- 
fermion case because moving one particle in momentum space causes a slight shift in 
all the other k , ,  a ‘backflow’, renormalising the energy and momentum of the excitation. 
This renormalisation does not change the qualitative picture of the low-energy excitation 
structure, which still looks like that of a free-fermion gas. At finite temperatures, the 
dispersion curves are affected because the backflow now takes place in the thermal 
equilibrium distribution of k, rather than the filled Fermi sea but, again, this is a rather 
minor effect, in that the energy scale is changed somewhat, but the allowed energy 
levels and occupation probabilities closely correspond to those for the free-fermion 
gas. In particular, near the Fermi surface there is particle-hole symmetry-at zero 
temperature, the low-energy ( k  << k F )  particle and hole excitations have identical 
dispersion curves, and for temperatures T<< EF, particles and holes are thermally 
excited in equal densities in symmetrical fashion. (Obviously, this is no longer true 
for excitations with bare momenta of order k F . )  

For the Toda lattice, if we assume it is legitimate to use the Bethe ansatz, a very 
similar picture emerges. The ground state is again a filled Fermi sea from - k ,  to k F ,  
corresponding to the lowest possible set of the associated quantum numbers, { I I }  = 0, 
i.1, * 2 ,  . . . . Again, the zero-temperature elementary excitations are holes and particles. 
However, at this point the analogy ends. There is no particle-hole symmetry. In the 
classical limit, the particles become solitons, the holes phonons, differing in energy by 
order h. On going to finite temperatures, the momentum space { k i }  distribution, which 
has been computed numerically by Hader and Mertens, is rounded in just the way 
one expects of a Fermi distribution. Yet this apparent symmetry about a ‘Fermi level’ 
is deceptive-in the classical limit, the system must be entirely describable by Boltzmann 
statistics. 

The purpose of the present paper is to try to give a clear physical picture of the 
Bethe ansatz excitations in the Toda lattice, especially at finite temperature, so that 
the particle-hole asymmetry is seen to be natural. The first finite-temperature Bethe 
ansatz analysis of the Toda lattice was given by Theodorakopoulos [5], who set up 
and solved numerically the standard Yang and Yang [ 113 integral equation for E*( p ) ,  
the classical version of the Yang and Yang function E ( k ) .  The thermodynamic function 
E ( k )  is defined by p ( k ) / p h ( k )  =e-E(k)’T, where p ( k )  is the density of filled states, 
p h ( k )  that of empty states, in the neighbourhood of momentum k. In the classical 
limit at finite temperature, of course, this ratio vanishes as h, so E* is defined essentially 
by subtracting T In h. From this analysis, Theodorakopoulos concluded that for the 
semiclassical case excitations were clearly of particle character since so few states were 
occupied. We believe this statement of his to be only partially correct-the phonon 
excitations are holes, and this large hole-to-particle ratio just reflects the large number 
of phonons in each mode near the classical limit. Another attempt at providing a 
physical interpretation of the Toda lattice Bethe ansatz equations was that of Takayama 
and Ishikawa [4], who presented a formulation of the equations closely resembling 
the phenomenological interacting gas model with phonons and solitons. However, as 
discussed by Gruner-Bauer and Mertens [l] ,  this type of model, based on dividing 
the excitations into two classes by choosing a finite-temperature Fermi surface, has 
some unphysical features. Our analysis clarifies some of these points. Gruner-Bauer 
and Mertens also derived formulae for the finite-temperature excitation energies and 
momenta in terms of the Bethe ansatz E function, by approaching the zero-temperature 
classical limit in two different ways. In this paper, we shall show how these formulae 
arise very naturally in our interpretation of the Bethe ansatz formalism. 
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In 0 2,  we review the zero-temperature Bethe ansatz results for the Toda lattice, 
then in 0 3 we discuss the finite-temperature case, explaining why the particles and 
holes are in fact physically quite different types of excitation, in contrast to the 
apparently analogous Bose gas case. 

2. Zero-temperature Bethe ansatz analysis for the Toda lattice 

The Hamiltonian for the Toda system has the form 

It was first observed by Sutherland [ 121 that, even though the wavefunction cannot 
be of Bethe ansatz form since the potential has finite extent, the Bethe ansatz equations 
nevertheless give the correct ground-state energy and low-energy excitation spectra for 
the infinite Toda lattice in the classical limit. For a dilute Toda gas, the Bethe ansatz 
wavefunction is correct asymptotically in the region where all particles are well 
separated. This non-trivial result is a consequence of the factorisability of the scattering 
matrix. Still, the energy levels are given correctly even when the gas is not dilute and 
there is no asymptotic region available. The exponential interaction leads to a scattering 
phase shift derivative 

S n 
n 2 + ( k / 2 ) 2  

6 ' ( k ) =  C 

where S is defined in terms of the coupling constant g by g = 2 S ( S +  1). 
The phase shift has this simple form only for the special coupling values correspond- 

ing to S integral, otherwise it must be expressed in terms of gamma functions. However, 
the classical limit is g + m ,  so we can always approach it through integral S values. 
The phase shift can thus be written in the classical limit 

(2.3) 6'  = 4 In( 1 + (2S/  k ) ' ) .  

The standard Bethe ansatz boundary condition for the quasimomenta 

2i7 1 
L L 

k = - I (  k )  +-E S (  k - k ' )  (2.4) 

gives a ground-state density p(  k )  satisfying 

Notice that 6'( k )  has a maximum at k = 0, 6'(0) = E' 1/ n = In S, and 6' falls away 
as 2 S 2 /  k 2  for large k 2 ,  a broad delta function with a weight 2i7S. This implies that in 
( 2 . 5 )  above, the second term on the right-hand side swamps the first for Ikl< k F ,  so 
the first term can be neglected. 

Sutherland [12] solved (2.5) for p by replacing I n ( l +  ( 2 S / k ) ' )  with l n ( 2 S / k ) ' ,  
dropping the negligible first term on the right-hand side, and then differentiating with 
respect to k' to get 

with the solution p (  k )  = C / ( k $ -  k2)1 '2 .  
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The particle density d = N/ L = 5 p(k)  dk, so C = d / r ,  

kF = 4Se-’/d. (2.7) 

The energy is given by 

Eo/ L = 5 k2p(k) dk = dkt /2  

so 

Eo/ N = 8s ’  e-2/d = 4g (2.8) 

This is the correct value for the infinite Toda lattice. Notice that, in the classical 
Toda lattice, this is all potential energy, since the particles are at rest, yet here it is 
formally a sum over kinetic energies, in a part of configuration space the particles do 
not reach. To realise these momenta, one could take a static Toda lattice of finite 
length held by walls on an infinite line, remove the walls at its end and let the particles 
spring apart. The final configuration would be widely separated particles with just this 
set of momenta. Strictly speaking, as we have noted elsewhere, this result is not quite 
right for $finite Toda lattices; the Bethe ansatz result differs from the exact classical 
ground-state energy by a term of order N-2 for an N-particle system. 

We turn now to a discussion of the particle and hole excitations above this ground 
state. Continuing to follow Sutherland’s [12] adaptation of the Bose gas analysis of 
Lieb and Liniger [lo], the energy and momentum of the excitation are given by 

AK(  k )  = 27rh p(k’) dk’ 1,: 
where E(k) is determined by 

- p  + k2 = E(k) 

( 2 . 9 ~ )  

(2.96) 

(2.10) 

p being the chemical potential. 

transform for E (  k) 
Following precisely the same steps as those after equation ( 2 . 5 )  gives the Hilbert 

yielding 

E (  k) = -4JkE - k2. 

This gives two dispersion curves. 
Type I, holes: Ikl< kF, k = kF cos 8: 

AK = 2 h  d e  

AE = 4Jk: - k2 = 4h2kf(sin 81. 

Type 11, particles: Ikl> kF, k = kF cosh 4 ;  
AK = hdkF(4 cosh 4-sinh 4 )  
A E  = h’ktjcosh 4 sinh 4 - 41. 

(2.11) 

(2.12) 

(2.13) 



Finite-temperature excitations of the Toda latice 3099 

The point we wish to emphasise with this rather lengthy recapitulation is that in 
the semiclassical regime, where k ,  is of order h-’ ,  the h factors cancel for particle-like 
excitations but not for hole-like excitations. Why is this system so different in this 
respect from the Bose gas? One might first think that the singularity in the density of 
states at the Fermi surface is leading to singular backflow effects, renormalising particles 
and holes in a different way. However, we shall see that this not the explanation. 

The resolution to the paradox becomes apparent if we consider a finite Toda system, 
N particles, say, with periodic boundary conditions, and  N sufficiently large that the 
errors in the Bethe ansatz approach mentioned earlier [9] are negligible. Even with 
N finite, we can still of course take the classical limit in which the phonon (hole) 
energy becomes vanishingly small compared with the soliton (particle) energy, so the 
problem is still there. Of course, the ground-state momentum distribution is now a 
sequence of N points in k space, in fact the solution of (2.4), taking the quantum 
number I ( k )  to be integer from -( N - 1)/2 to ( N  - 1)/2, assuming N odd. For 
reasonably large N, the k, will distribute themselves close to the C(k:-  k 2 ) - ’ / *  distribu- 
tion, and the ground-state energy will be Z p f =  h 2 Z  kf .  From (2.8) above, this is a 
macroscopic quantity, and  so the p ,  are finite in the classical limit-and all the k, are 
infinite, of order h-’.  Sutherland’s neglect of the finite term in (2.5) is equivalent to 
neglecting the integers in (2.4). 

We can now see the essential difference between particles and holes. Let us begin 
by considering a hole excitation in the ground state. This means in terms of the 
quantum numbers that some n ( n  < ( N  - 1)/2) is missing and there is an  extra quantum 
number at ( N  + 1)/2, say. How does this affect the k, distribution? To leading order, 
it does not affect it at all because, as we have just argued, the integers are negligible 
in (2.4)! Thus the effect is of order h, a slight shift to the right for k, ,  and at the same 
time some shifts in the other k , .  Since there are a finite number N of these, this remains 
a quantum (order h )  effect. Thus in terms of the k, distribution, the hole excitation 
does not look like a missing k,-it looks like a very slightly enlarged gap. 

The point to be emphasised here is that in the classical limit the phase shifts between 
particles become infinite, of order h-’ .  Thus the relative phase shifting, not the sequence 
of quantum numbers, is the major determinant of the configuration of k, in the ground 
state. In contrast, for the Bose gas analysis of Lieb and Liniger, the interval between 
adjacent k ,  in the ground state is largely determined by the quantum number difference, 
so a single hole excitation corresponds to a gap between adjacent filled k, close to 
twice the interval in the ground state. 

For the particle distribution, if the excitation from the ground state is created by 
shifting the quantum number N / 2  to N / 2 +  n, with n finite, then in the classical limit 
the excitation energy again goes to zero. But the particle excitation is actually defined 
by making a finite momentum change in the top  p ,  (2 hk,) which in the classical limit 
implies a n  infinite n. The p ,  are classical momenta of the Toda particles, so naturally 
this is a macroscopic excitation. 

3. Finite-temperature excitations of the Toda lattice 

Yang and Yang define the function ~ ( k )  in terms of the local densities of filled and  
empty states in thermal equilibrium 
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Minimising the free energy leads to the well known integral equation for E ( k ) ,  

(3.2) 

In the limit T +  0 this gives (2.10) above. 

Boltzmann statistics are appropriate, p/ph<< 1, and so 
The classical limit of this equation is given by noting that at finite temperatures 

- p + k 2 =  & ( k ) + -  6 ’ ( k - k ’ )  e--E(k’)’Tdk‘. 277 J -  -m 
(3.3) 

This is the equation solved by Theodorakopoulos. 
For the Bose gas, described by equation (3.2) (but with the appropriate phase shift) 

Yang and Yang argued that even at finite temperature it is reasonable to define 
excitations above the thermal equilibrium state in a way analogous to (2.12) above, 
except that now there is no natural base line fermion energy, so an excitation is one 
particle plus one hole, generated by moving a single quantum number from I to I‘ 
corresponding to a bare quasimomentum shift from k to k’ ,  say. The resulting excitation 
does have an explicit two-component form, the energy is E (  k ’ )  - ~ ( k ) ,  and the momen- 
tum can be written analogously. Consequently, the term ‘excitation energy’ is often 
used for E (  k )  alone. 

This whole Yang and Yang analysis has been taken and applied to the finite- 
temperature Toda lattice, but the interpretation of ~ ( k )  in terms of the known Toda 
excitations in the classical limit has been unclear. As we mentioned in the introduction, 
there are some important differences between the Bose gas and the Toda lattice, despite 
the formal similarity. One way to illuminate the difference is to look separately at the 
quantum number distributions { I i }  and the quasimomentum distributions {k,} for the 
two cases. At zero temperature, as discussed above, the ground state of the Bose gas 
has {Ii} = 0, 1 1 ,  1 2 , .  . . to fZmsx,  the corresponding ki also fill a sea to a maximum 
momentum hk, of order Nh, for N particles in a system of unit length. For the Toda 
lattice, the {Ii} distribution is again 0, *I, *2,. . , and the ki fill a sea, but this time 
the maximum sea momentum hkF is macroscopioon the quantum scale, the ki are 
spread far apart by the macroscopic phase shifts. At finite temperatures, for the Bose 
gas, the {Ii} and {ki} distributions look very similar-they look like typical Fermi 
distributions, and the hole and particle distributions are very like those for a free Fermi 
gas. For the semiclassical Toda lattice, on the other hand, these two distributions 
behave quite differently. In the classical limit, at any finite temperature the quantum 
number distribution {Ii) necessarily goes to the classical Boltzmann distribution. This 
means the Fermi sea evaporates instantly on heating, and the Ii have vast distances 
between them. In contrast, the {ki} distribution at finite temperature looks like the 
{ki} distribution at zero temperature, rounded off a little. It looks like a typical heated 
Fermi sea, but it is not. The phonons are the holes in the 1, distribution; that is to say 
the number of states between neighbouring Zi, i.e. Zit, - Zi - 1, is the occupation number 
of that particular phonon mode, of order h-’  in the classical limit. This causes a 
macroscopic speading of the ki, but they were already (at zero temperature) macroscopi- 
cally spread by the phase shifts, also of order h - ’ .  Thus the rounding of the apparent 
‘Fermi sea’ is a completely macroscopic phenomenon! 

It is not difficult to understand the result of Gruner-Bauer and Mertens [ 11 in terms 
of this picture. By taking the classical zero-temperature limit in two different ways, 
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they find the phonon energy &ph  to be given in terms of the 'excitation energy' E by 

&ph = kTe-P'. (3.4) 

Since e-'€ = p/ph, and the phonon occupation per mode, from the argument above, 
is just ph/p, (3.4) is merely the statement of equipartition of energy. 

It is easy to verify in more detail that this interpretation is correct. In the Bethe 
ansatz formulation, a phonon is created at k, by moving all I ,  for i > j  to I,  + 1. This 
yields 

AE = [ & ( I ,  + 1) - & ( I , ) ] = [  d&(k)p /ph= j  d&(k)  = p - '  
" J  r r 

where h ( 1 , )  is the number of integers less than Ii measured from an appropriate 
baseline. These are just the formulae of Gruner-Bauer and Mertens for phonons. 

It is clearly not easy to separate out the soliton and phonon excitations at finite 
temperatures. A single k, far above the rest would of course be a soliton, but the 
thermal equilibrium distribution has a smoothly decreasing density of k, out to infinite 
k in the limit of a large system. Thus one can write down a free energy as an integral 
over k space simply in terms of the phonon modes between occupied k,. We believe 
this explains why attempts to formulate the free energy as a sum of phonon and soliton 
contributions have not met with much success. 
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